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Abstract
Using a new method and additional (conditional and partial) equivalence
transformations, we performed group classification in a class of variable
coefficient (1+1)-dimensional nonlinear diffusion–convection equations of the
general form f (x)ut = (D(u)ux)x + K(u)ux . We obtain new interesting cases
of such equations with the density f localized in space, which have non-trivial
invariance algebra. Exact solutions of these equations are constructed. We
also consider the problem of investigation of the possible local transformations
for an arbitrary pair of equations from the class under consideration, i.e. of
describing all the possible partial equivalence transformations in this class.

PACS numbers: 02.30.Jr, 02.20.Sv

1. Introduction

The problems of group classification and exhaustive solutions of such problems are not only
interesting from the purely mathematical point of view, but also important for applications.
In physical models there often exist a priori requirements for symmetry groups that
follow from physical laws (in particular, from Galilean or relativistic theory). Moreover,
modelling differential equations could contain parameters or functions which have been found
experimentally and so are not strictly fixed. (It is said that these parameters and functions are
arbitrary elements.) At the same time mathematical models have to be simple enough to allow
one to analyse and solve them. Solving the problems of group classification makes it possible
to accept for the criterion of applicability the following statement: modelling differential
equations have to admit a group with certain properties or the most extensive symmetry group
from the possible ones.
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In this paper we consider a class of variable coefficient nonlinear diffusion–convection
equations of the form

f (x)ut = (g(x)D(u)ux)x + K(u)ux (1)

where f = f (x), g = g(x),D = D(u) and K = K(u) are arbitrary smooth functions of their
variables, f (x)g(x)D(u) �= 0. The linear case of (1) (D,K = const) was studied by Lie [1]
in his classification of linear second-order PDEs with two independent variables. (See also a
modern treatment of this subject in [2].) This is why we assume below that (Du,Ku) �= (0, 0),
i.e. (1) is a nonlinear equation.

Using the transformation t̃ = t, x̃ = ∫
dx

g(x)
, ũ = u, we can reduce equation (1) to

f̃ (x̃)ũt̃ = (D(ũ)ũx̃)x̃ + K(ũ)ũx̃

where f̃ (x̃) = g(x)f (x) and g̃(x̃) = 1. (Likewise any equation of form (1) can be reduced to
the same form with f̃ (x̃) = 1.) That is why without loss of generality we restrict ourselves to
investigation of the equation

f (x)ut = (D(u)ux)x + K(u)ux. (2)

In addition to their intrinsic theoretical interest, equations (2) are used to model a wide
variety of phenomena in physics, chemistry, mathematical biology etc. For the case f (x) = 1
equation (2) describes vertical one-dimensional transport of water in homogeneous non-
deformable porous media. When K(u) = 0 this equation describes stationary motion of a
boundary layer of fluid over a flat plate, a vortex of incompressible fluid in a porous medium
for polytropic relations of gas density and pressure. The outstanding representative of the class
of equations (2) is the Burgers equation that is the mathematical model for a large number of
physical phenomena. (For more details refer to [4–7].)

Investigation of the nonlinear heat equations by means of symmetry methods started in
1959 with Ovsiannikov’s work [8] where he studied symmetries of the equation

ut = (f (u)ux)x. (3)

In 1987 Akhatov, Gazizov and Ibragimov [9] classified the equations

ut = G(ux)uxx. (4)

Dorodnitsyn (in 1982 [10]) performed group classification of the equation

ut = (G(u)ux)x + g(u). (5)

Oron, Rosenau (in 1986 [11]) and Edwards (in 1994 [12]) presented the most extensive (at the
time) list of symmetries of the equations

ut = (G(u)ux)x + f (u)ux. (6)

The results of [8, 10, 11] were generalized by Cherniha and Serov (in 1998 [13]) who classified
the nonlinear heat equation with a convection term

ut = (G(u)ux)x + f (u)ux + g(u). (7)

It should be noted that equations (1)–(7) are particular cases of the more general class of
equations

ut = F(t, x, u, ux)uxx + G(t, x, u, ux). (8)

The group classification of (8) is presented in [17–21]. However, since the equivalence group
of (8) is essentially wider than those for (1)–(7) the results of [17–21] cannot be directly used
for symmetry classification of equations (1)–(7). Nevertheless, these results are useful for
finding additional equivalence transformations in the above classes.
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Equations of the form (2) have also been investigated from points of view other than the
classic Lie symmetry one. For instance, potential symmetries of subclasses of (2) where e.g.
either f = 1 or K = 0 were studied by Sophocleous [14–16].

Some symmetry properties of class (1) were considered in a recent paper [3]. However,
it does not present correct and complete results on the subject. The overwhelming majority
of cases with non-trivial Lie symmetry were omitted, and there are mistakes in the cases that
were adduced. Nevertheless the subject seemed very interesting, and we decided to study Lie
symmetries of class (2).

The ultimate goal of this paper is to present an example of exhaustive solution of the group
classification problem in quite a difficult case. After giving a precise definition and a discussion
of this problem in the general case, we performed the complete extended group classification
and found additional equivalence transformations and exact solutions of equations (2). A lot
of new interesting cases of extensions of the maximal Lie symmetry group were obtained for
these equations. For example, we determined the equations which have the density f localized
in the space of x and are invariant with respect to m-dimensional (2 � m � 4) Lie symmetry
algebras, which allows construction of new exact non-stationary solutions for them.

Problems of general group classification, except for really trivial cases, are very difficult.
This can be illustrated by the multitude of papers where such a general classification problem
is solved incorrectly or incompletely. There are also many papers on ‘preliminary group
classification’ where authors list some cases with new symmetry but do not claim that
the general classification problem is solved completely. For this reason, finding an effective
approach to simplification is essentially equivalent to showing the feasibility of solving the
problem at all. In this paper we develop and apply a simple and effective tool based on the
investigation of the specific compatibility of classifying conditions. This was first proposed
in [23] and then applied in solving a number of different group classification problems
[24–26]. Another tool is the systematic use of additional (conditional and partial) equivalence
transformations, which allows us to put in order, verify and analyse the results obtained.

Our paper is organized as follows. First of all (section 2) we describe the group
classification method used here and introduce the notions of conditional and partial
equivalence. Then (sections 3) we significantly enhance the results of [3] and give the
complete group classification of class (2). Since the case f (x) = 1 has a great variety of
applications and has been investigated earlier by a number of authors, we collect results for
this class together in section 4. Section 5 contains the proof of the main theorem on group
classification of the class (2). We attempted to present our calculations in reasonable detail so
that verification would be feasible. Conditional equivalence transformations are considered in
section 6, where we also present four lemmas on possible local equivalence transformations
between two arbitrary equations of form (2). The results of the group classification are used
to find exact solutions of equations from class (2) (section 7).

2. The group classification method and additional equivalence

Let us describe the classical algorithm for group classification restricting consideration, for
simplicity, to the case of one differential equation of the form

Lθ(x, u(n)) = L(x, u(n), θ(x, u(n))) = 0. (9)

Here x = (x1, . . . , xl) denotes the independent variables, u is a dependent variable, u(n) is the
set of all the partial derivatives of the function u with respect to x of order no greater than n,
including u as the derivative of zero order. L is a fixed function of x, u(n) and θ . θ denotes the
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set of arbitrary (parametric) functions θ(x, u(n)) = (θ1(x, u(n)), . . . , θ
k(x, u(n))) satisfying

the conditions

S(x, u(n), θ(q)(x, u(n))) = 0 S = (S1, . . . , Sr). (10)

These conditions consist of r differential equations on θ , where x and u(n) play the roles of
independent variables and θ(q) stands for the set of all the partial derivatives of θ of order no
greater than q. In what follows we call the functions θ(x, u(n)) arbitrary elements. We denote
the class of equations of form (9) with the arbitrary elements θ satisfying the constraint (10)
as L|S .

Let the functions θ be fixed. Each one-parameter group of local point transformations that
leaves equation (9) invariant corresponds to an infinitesimal symmetry operator of the form

Q = ξa(x, u)∂xa
+ η(x, u)∂u

(here the summation over the repeated indices is understood). The complete set of such groups
generates the principal group Gmax = Gmax(L, θ) of equation (9). The principal group Gmax

has a corresponding Lie algebra Amax = Amax(L, θ) of infinitesimal symmetry operators of
equation (9). The kernel of principal groups is the group

Gker = Gker(L, S) =
⋂

θ :S(θ)=0

Gmax(L, θ)

for which the Lie algebra is

Aker = Aker(L, S) =
⋂

θ :S(θ)=0

Amax(L, θ).

Let G equiv = G equiv(L, S) denote the local transformations group preserving the form of
equations from L|S . (Sometimes one considers a subgroup instead the complete equivalence
group.)

The problem of group classification consists in finding of all possible inequivalent
cases of extensions of Amax, i.e. in a listing all G equiv-inequivalent values of θ that satisfy
equation (10) and the condition Amax(L, θ) �= Aker.

In the approach used here, group classification is the application of the following algorithm
[2, 22]:

1. From the infinitesimal Lie invariance criterion we find the system of determining equations
for the coefficients of Q. It is possible that some of the determining equations do not
contain arbitrary elements and therefore can be integrated immediately. Others (i.e. the
equations containing arbitrary elements explicitly) are called classifying equations. The
main difficulty in group classification is the need to solve classifying equations with
respect to the coefficients of the operator Q and arbitrary elements simultaneously.

2. The next step involves finding the kernel algebra Aker of the principal groups of
equations from L|S . After decomposing the determining equations with respect to all the
unconstrained derivatives of arbitrary elements, one obtains a system of partial differential
equations for coefficients of the infinitesimal operator Q only. Solving this system yields
the algebra Aker.

3. In order to construct the equivalence group G equiv of the class L|S we have to investigate
the local symmetry transformations of system (9), (10), considering it as a system of
partial differential equations with respect to θ with the independent variables x, u(n).
Usually one considers only transformations that can be projected on the space of the
variables x and u. Although in the case where θ depends on, at most, these variables, it
can be assumed that their transformations depend on θ too. After restricting ourselves
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to studying the connected component of unity in G equiv, we can use the Lie infinitesimal
method. To find the complete equivalence group (including discrete transformations) we
should use a more complicated direct method.

4. If Amax is an extension of Aker (i.e. when Amax(L, θ) �= Aker), then the classifying
equations define a system of non-trivial equations for θ . Depending on their form and
number, we obtain different cases of extensions of Aker. To completely integrate the
determining equations we have to investigate a large number of such cases. In order
to avoid cumbersome enumeration of possibilities in solving the determining equations
we can use, for instance, algebraic methods [17–21, 27], a method which involves the
investigation of compatibility of the classifying equations [23–26] or combined methods
[28, 29].

The result of application of the above algorithm is a list of equations with their Lie
invariance algebras. The problem of group classification is assumed to be completely
solved if

(i) the list contains all the possible inequivalent cases of extensions;
(ii) all the equations from the list are mutually inequivalent with respect to the transformations

from G equiv;
(iii) the algebras obtained are the maximal invariance algebras of the respective equations.

Such a list may include equations that are mutually equivalent with respect to local
transformations which do not belong to G equiv. Knowing such additional equivalences allows
one to essentially simplify further investigation of L|S . Constructing them can be considered
as the fifth step of the algorithm of group classification. Then, the above enumeration of
requirements for the resulting list of classifications can be completed by the following step:

(iv) all the possible additional equivalences between the listed equations are constructed in
explicit form.

One of the ways of finding additional equivalences is based on the fact that equivalent equations
have equivalent maximal invariance algebras. The second way is by systematic study of
conditional and partial equivalence transformations in the class L|S . Let us give a definition
of such a transformation. Consider a system

S ′(x, u(n), θ(q ′)(x, u(n))) = 0 S ′ = (S ′
1, . . . , S

′
r ′) (11)

formed by r ′ differential equations on θ with x and u(n) as independent variables. Let
G equiv(L, (S, S ′)) denote the equivalence group of the subclass L|S,S ′ of L|S , where the
functions θ satisfy systems (10) and (11) simultaneously.

Notion 1. We call the transformations from G equiv(L, (S, S ′)) a conditional equivalence
transformation of class L|S (under the additional constraint S ′). The local transformations
which transform equations from L|S,S ′ to L|S are called partial equivalence transformations
of the class L|S (under the additional constraint S ′).

It is obvious that any conditional equivalence is a partial one under the same additional
constraint and any local symmetry transformation of equation (9) for a fixed value θ =
θ0(x, u(n)) is a partial equivalence transformation under the constraint θ = θ0. The problem of
description of all the possible partial equivalence transformations in the class L|S is equivalent
to that of local transformations between two arbitrary equations from L|S . Additional
constraints on arbitrary elements never imply constraining sets of partial equivalences.
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3. Results of classification

Consider a one-parameter Lie group of local transformations in (t, x, u) with an infinitesimal
operator of the form Q = ξ t (t, x, u)∂t + ξx(t, x, u)∂x + η(t, x, u)∂u, which keeps
equation (2) invariant. The Lie criterion of infinitesimal invariance yields the following
determining equations for ξ t , ξ x and η:

ξ t
x = ξ t

u = ξx
u = 0

Dηuu + Duηu − Du

(
2ξx

x − ξ t
t

)
+ Duuη − fx

f
Duξ

x = 0

2ξx
x − ξ t

t +
fx

f
ξx = Du

D
η f ηt − Kηx − Dηxx = 0

K

(
fx

f
ξx + ξx

x − ξ t
t

)
+ D

(
ξx
xx − 2ηxu

) − 2Duηx − Kuη − f ξx
t = 0.

(12)

Investigating the compatibility of system (12) we obtain an additional equation ηuu = 0
without arbitrary elements. With this condition, system (12) can be rewritten in the form

ξ t
x = ξ t

u = ξx
u = 0 ηuu = 0 (13)

2ξx
x − ξ t

t +
fx

f
ξx = Du

D
η (14)

Dηxx + Kηx − f ηt = 0 (15)

(DuK − KuD)
η

D
− Kξx

x − 2Duηx + Dξx
xx − f ξx

t − 2Dηxu = 0. (16)

Equations (13) do not contain arbitrary elements. Integration of them yields

ξ t = ξ t (t) ξ x = ξx(t, x) η = η1(t, x)u + η0(t, x). (17)

Thus, group classification of (2) reduces to solving classifying conditions (14)–(16).
Splitting system (14)–(16) with respect to the arbitrary elements and their non-vanishing

derivatives gives the equations ξ t
t = 0, ξ x = 0, η = 0 for the coefficients of the operators

from Aker of (2). As a result, the following theorem is true.

Theorem 1. The Lie algebra of the kernel of principal groups of (2) is Aker = 〈∂t 〉.
The next step of the algorithm of group classification is finding equivalence

transformations of class (2). To find these transformations, we have to investigate Lie
symmetries of the system that consists of equation (2) and the additional conditions

ft = fu = 0 Dt = Dx = 0 Kt = Kx = 0.

Using the classical Lie approach, we find the invariance algebra of the above system that
forms the Lie algebra of G equiv for class (2). Thus, we obtain the following statement.

Theorem 2. The Lie algebra of G equiv for class (2) is

A equiv = 〈∂t , ∂x, ∂u, t∂t + f ∂f , x∂x − 2f ∂f − K∂K, u∂u, f ∂f + K∂K + D∂D〉. (18)

Therefore, G equiv contains the following continuous transformations:

t̃ = t eε4 + ε1 x̃ = x eε5 + ε2 ũ = u eε6 + ε3

f̃ = f eε4−2ε5+ε7 D̃ = D eε7 K̃ = K e−ε5+ε7
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Table 1. The case ∀D(u).

N K(u) f (x) Basis of Amax

1 ∀ ∀ ∂t

2a ∀ eεx ∂t , εt∂t + ∂x

2b D e−2x+γ e−x
∂t , γ t∂t − ex∂x

2c D e−2x(e−x + γ )ν ∂t , (ν + 2)t∂t − (e−x + γ ) ex∂x

2d 0 |x|ν ∂t , (ν + 2)t∂t + x∂x

2e 1 x−1 ∂t , e−t (∂t − x∂x)

3a 0 1 ∂t , ∂x, 2t∂t + x∂x

3b D e−2x ∂t , 2t∂t − ∂x, ex∂x

Here γ, ν �= 0, ε = 0, 1 mod G equiv, γ = ±1 mod G equiv.

Additional equivalence transformations:
1. 2b → 2a (K = 0, ε = 1): t̃ = t, x̃ = γ e−x , ũ = u;
2. 2c (ν �= −2) → 2a (K = −D/(ν + 2), ε = 1): t̃ = t, x̃ = (ν + 2) ln|e−x + γ |, ũ = u;

2c (ν = −2) → 2a (K = −D, ε = 0): t̃ = t, x̃ = ln|e−x + γ |, ũ = u;
3. 2d (ν �= −2) → 2a (K = −D/(ν + 2), ε = 1): t̃ = t, x̃ = (ν + 2) ln|x|, ũ = u;

2d (ν = −2) → 2a (K = −D, ε = 0): t̃ = t, x̃ = ln|x|, ũ = u;
4. 2e → 2a (K = −D, ε = 1): t̃ = et , x̃ = ln|x| + t, ũ = u;
5. 3b → 3a: t̃ = t, x̃ = e−x , ũ = u.

where ε1, . . . , ε7 are arbitrary constants. For class (2) there also exists a non-trivial group
of discrete equivalence transformations generated by four involutive transformations of
alternating sign in the sets {t, D,K}, {x,K}, {u} and {f,D,K}. It can be proved by the
direct method that G equiv coincides with the group generated by the both continuous and
discrete transformations from the above list.

Theorem 3. A complete set of inequivalent equations (2) with respect to the transformations
from G equiv with Amax �= Aker is exhausted by cases given in tables 1–3.

In tables 1–3 we list all possible G equiv-inequivalent sets of functions f (x),D(u),K(u)

and corresponding invariance algebras. Numbers with the same Arabic figures correspond to
cases that are equivalent with respect to a local equivalence transformation. Explicit formulae
for these transformations are adduced after the tables. The cases numbered with different
Arabic figures are inequivalent with respect to local equivalence transformations. In order to
simplify the results presented, in the case f (x) = 1 we just use the conditional equivalence
transformation x̃ = x − εt, K̃ = K + ε (the other variables are not transformed) from G

equiv
1

(see section 4). Other conditional equivalence transformations are considered in section 6.
Below, for convenience we use double numeration T.N of classification cases and local

equivalence transformations, where T denotes the number of the table and N the number of
the case (or transformation) in table T. The notation ‘equation T.N’ is used for the equation of
the form (2) where the parameter functions take the values from the corresponding case.

The operators from tables 1–3 form bases of the maximal invariance algebras iff the
corresponding sets of the functions f,D,K are G equiv-inequivalent to ones with most extensive
invariance algebras. For example, in case 3.1 (µ, ν) �= (0, 0) and λ �= −1 if ν = 0. And in
case 3.2 (µ, ν) /∈ {(−2,−2), (0, 1)} and ν �= 0. Similarly, in case 2.1 the constraint set on the
parameters µ, ν and λ coincides with the one for case 3.1, and we can assume that µ = 1 or
ν = 1. In case 2.2 we consider ν = 1 immediately.

After analysing the results obtained, we can state the following theorem.

Theorem 4. If an equation of form (2) is invariant with respect to a Lie algebra of dimension
no less than 4 then it can be reduced by means of local transformations to one with f (x) = 1.
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Table 2. The case D(u) = eµu.

N µ K(u) f (x) Basis of Amax

1 ∀ eνu |x|λ ∂t , (λµ − λν + µ − 2ν)t∂t + (µ − ν)x∂x + ∂u

2 ∀ eu 1 ∂t , ∂x, (µ − 2)t∂t + (µ − 1)x∂x + ∂u

3 1 u 1 ∂t , ∂x, t∂t + (x − t)∂x + ∂u

4 1 ε eu ∀ ∂t , t∂t − ∂u

5a 1 0 f 1(x) ∂t , t∂t − ∂u, αt∂t + (βx2 + γ1x + γ0)∂x + βx∂u

5b 1 eu f 2(x) ∂t , t∂t − ∂u, αt∂t − (β e−x + γ1 + γ0 ex)∂x + β e−x∂u

5c 1 1 x−1 ∂t , x∂x + ∂u, e−t (∂t − x∂x)

6a 1 0 1 ∂t , t∂t − ∂u, 2t∂t + x∂x, ∂x

6b 1 eu e−2x ∂t , t∂t − ∂u, 2t∂t − ∂x, ex∂x

6c 1 eu e−2x(e−x + γ )−3 ∂t , t∂t − ∂u, (e−x + γ ) ex∂x + ∂u, −(e−x + γ )2 ex∂x+
(e−x + γ )∂u

6d 1 0 x−3 ∂t , t∂t − ∂u, x∂x − ∂u, x
2∂x + x∂u

Here λ �= 0, ε ∈ {0, 1} mod G equiv, α, β, γ1, γ0 = const and

f 1(x) = exp

{∫ −3βx − 2γ1 + α

βx2 + γ1x + γ0
dx

}
f 2(x) = exp

{∫
β e−x − 2γ0 ex − α

β e−x + γ1 + γ0 ex
dx

}
.

Additional equivalence transformations:
1. 5b → 5a: t̃ = t, x̃ = e−x , ũ = u;
2. 5c → 5a (α = γ0 = 1, β = γ1 = 0, f 1 = x−1): t̃ = et , x̃ = et x, ũ = u;
3. 6b → 6a: t̃ = t, x̃ = e−x , ũ = u;
4. 6c → 6a: t̃ = t sign(e−x + γ ), x̃ = 1/(e−x + γ ), ũ = u − ln|e−x + γ |;
5. 6d → 6a: t̃ = t sign x, x̃ = 1/x, ũ = u − ln|x|.

4. Group classification for the subclass with f (x) = 1

Class (2) includes a subclass of equations of the general form

ut = (D(u)ux)x + K(u)ux (19)

(i.e. the function f is assumed to be equal to 1 identically). Symmetry properties of equations
(19) were studied in [11, 12]. But we are not aware of any paper containing a correct
and exhaustive investigation of the subject. Now let us single out the results of the group
classification of equations (19) from the above section.

Theorem 5. The Lie algebra of the kernel of the principal groups of (19) is Aker
1 = 〈∂t , ∂x〉.

Theorem 6. The Lie algebra of the equivalence group G
equiv
1 for the class (19) is

A
equiv
1 = 〈∂t , ∂x, ∂u, u∂u, t∂x − ∂K, 2t∂t + x∂x − K∂K, t∂t − D∂D − K∂K〉. (20)

Any transformation from G
equiv
1 has the form

t̃ = tε2
4ε5 + ε1 x̃ = xε4 + ε7t + ε2 ũ = uε6 + ε3

D̃ = Dε−1
5 K̃ = Kε−1

4 ε−1
5 − ε7

(21)

where ε1, . . . , ε7 are arbitrary constants, ε4ε5ε6 �= 0.

Theorem 7. The complete set of G
equiv
1 -inequivalent extensions of Amax for equations (19) is

given in table 4.
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Table 3. The case D(u) = uµ.

N µ K(u) f (x) Basis of Amax

1 ∀ uν |x|λ ∂t , (µ + λµ − 2ν − λν)t∂t + (µ − ν)x∂x + u∂u

2 ∀ uν 1 ∂t , ∂x, (µ − 2ν)t∂t + (µ − ν)x∂x + u∂u

3 ∀ ln u 1 ∂t , ∂x, µt∂t + (µx − t)∂x + u∂u

4 ∀ εuµ ∀ ∂t , µt∂t − u∂u

5a ∀ 0 f 3(x) ∂t , µt∂t − u∂u,
αt∂t + ((1 + µ)βx2 + γ1x + γ0)∂x + βxu∂u

5b ∀ uµ f 4(x) ∂t , µt∂t − u∂u,
αt∂t − ((1 + µ)β e−x + γ1 + γ0 ex)∂x + β e−xu∂u

5c µ �= −3/2 1 x−1 ∂t , e−t (∂t − x∂x), µx∂x + u∂u

6a µ �= −4/3 0 1 ∂t , µt∂t − u∂u, ∂x, 2t∂t + x∂x

6b µ �= −4/3 uµ e−2x ∂t , µt∂t − u∂u, 2t∂t − ∂x, ex∂x

6c −1 0 eγ x ∂t , t∂t + u∂u, ∂x − γ u∂u, 2t∂t + x∂x − γ xu∂u

6d −1 u−1 e−2x+γ e−x
∂t , t∂t + u∂u, ex∂x + γ u∂u, 2t∂t − ∂x − γ e−xu∂u

6e µ �= −4/3,−1 0 |x|−
4+3µ
1+µ ∂t , µt∂t − u∂u, (2 + µ)t∂t − (1 + µ)x∂x ,

(1 + µ)x2∂x + xu∂u

6f µ �= −4/3,−1 uµ e−2x

(e−x+γ )
4+3µ
1+µ

∂t , µt∂t − u∂u, (2 + µ)t∂t + (1 + µ)(e−x + γ ) ex∂x ,

−(1 + µ)(e−x + γ )2 ex∂x + (e−x + γ )u∂u

6g −3/2 1 x−1 ∂t , e−t (∂t − x∂x), 3x∂x − 2u∂u, et (x2∂x − 2xu∂u)

7a −4/3 0 1 ∂t , 4t∂t + 3u∂u, ∂x, 2t∂t + x∂x, x2∂x − 3xu∂u

7b −4/3 u−4/3 e−2x ∂t , 4t∂t + 3u∂u, 2t∂t − ∂x, e−x(∂x + 3u∂u), ex∂x

8 0 u 1 ∂t , ∂x, 2t∂t + x∂x − u∂u, t∂x − ∂u,
t2∂t + tx∂x − (tu + x)∂u

Here µ �= 0 for cases 4–6. ε = 0, 1 mod G equiv, λ �= 0, α, β, γ1, γ0 = const and

f 3(x) = exp

{∫ −(4 + 3µ)βx − 2γ1 + α

(1 + µ)βx2 + γ1x + γ0
dx

}

f 4(x) = exp

{∫
(2 + µ)β e−x − 2γ0 ex − α

(1 + µ)β e−x + γ1 + γ0 ex
dx

}
.

Additional equivalence transformations:
1. 5b → 5a: t̃ = t, x̃ = e−x , ũ = u;
2. 5c → 5a (α = γ0 = 1, β = γ1 = 0, f 1 = x−1): t̃ = et , x̃ = et x, ũ = u;
3. 6b → 6a: t̃ = t, x̃ = e−x , ũ = u;
4. 6c → 6a (µ = −1): t̃ = t, x̃ = x, ũ = eγ xu;
5. 6d → 6a (µ = −1): t̃ = t, x̃ = e−x , ũ = eγ e−x

u;
6. 6e → 6a: t̃ = t, x̃ = −1/x, ũ = |x|− 1

1+µ u;
7. 6f → 6a: t̃ = t, x̃ = −1/(e−x + γ ), ũ = |e−x + γ |− 1

1+µ u;
8. 6g → 6a (µ = −3/2): t̃ = et , x̃ = −e−t /x, ũ = |et x|− 1

1+µ u;
9. 7b → 7a: t̃ = t, x̃ = e−x , ũ = u.

5. Proof of theorem 3

Our method is based on the fact that the substitution of the coefficients of any operator from
Amax\Aker into the classifying equations results in nonidentity equations for arbitrary elements.
In the problem under consideration, the procedure of looking for the possible cases mostly
depends on equation (14). For any operator Q ∈ Amax equation (14) gives some equations on
D of the general form

(au + b)Du = cD (22)
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Table 4. The case f (x) = 1.

N D(u) K(u) Basis of Amax

1 ∀ ∀ ∂t , ∂x

2 ∀ 0 ∂t , ∂x, 2t∂t + x∂x

3 eµu eu ∂t , ∂x, (µ − 2)t∂t + (µ − 1)x∂x + ∂u

4 eu u ∂t , ∂x, t∂t + (x − t)∂x + ∂u

5 eu 0 ∂t , ∂x, t∂t − ∂u, 2t∂t + x∂x

6 uµ uν ∂t , ∂x, (µ − 2ν)t∂t + (µ − ν)x∂x + u∂u

7a uµ 0 ∂t , ∂x, µt∂t − u∂u, 2t∂t + x∂x

7b u−2 u−2 ∂t , ∂x, 2t∂t + u∂u, e−x(∂x + u∂u)

8 u−4/3 0 ∂t , ∂x, 4t∂t + 3u∂u, 2t∂t + x∂x, x2∂x − 3xu∂u

9 uµ ln u ∂t , ∂x, µt∂t + (µx − t)∂x + u∂u

10 1 u ∂t , ∂x, t2∂t + tx∂x − (tu + x)∂u, 2t∂t + x∂x − u∂u, t∂x − ∂u

Here µ, ν = const. (µ, ν) �= (−2, −2), (0, 1) and ν �= 0 for N = 6. µ �= −4/3 for N = 7a.
Case 7b can be reduced to 7a (µ = −2) by means of the conditional equivalence transformation
t̃ = t, x̃ = ex , ũ = e−xu.

where a, b, c = const. In general, for all operators from Amax the number k of such independent
equations is no greater than 2; otherwise they form an incompatible system on D. k is an
invariant value for the transformations from G equiv. Therefore, there exist three inequivalent
cases for the value of k: k = 0, k = 1, k = 2. Let us consider these possibilities in more
detail, omitting cumbersome calculations.

k = 0 (table 1). Here the coefficients of any operator from Amax must satisfy

η = 0 2ξx
x − ξ t

t +
fx

f
ξx = 0 −Kξx

x + Dξx
xx − f ξx

t = 0. (23)

Let us suppose that K /∈ 〈1,D〉. It follows from the last equation of the system (23) that
ξx
x = ξx

t = 0. Therefore, the second equation is a nonidentity equation for f of the form
fx = µf without fail. Solving this equation yields case 2a.

Now let K ∈ 〈1,D〉, i.e. K = εD +β where ε ∈ {0, 1}, β = const. Then the last equation
of (23) can be decomposed into the following ones:

ξx
xx = εξx

x βξx
x + f ξx

t = 0.

The equation (ξx(fx/f + 2ε))x = 0 is a differential consequence of the reduced determining
equations. Therefore, the condition fx/f + 2ε = 0 is a classifying one.

Suppose this condition is true, i.e. f = e−2εx mod G equiv. There exist three different
possibilities for values of the parameters ε and β:

ε = 1 β �= 0 ε = 1 β = 0 ε = 0
(
then β = 0 mod G

equiv
1

)
which yield cases 2a, 3b and 3a respectively.

Let ε = 0 and fx/f �= 0. Then either our consideration is reduced to case 2a or
f = xµ mod G equiv where µ �= 0. Depending on the value of the parameter β (β = 0 or
β �= 0 and then µ = −1) we obtain case 2d or case 2e.

Let ε = 1 and fx/f �= −2. Then β = 0 and fx/f = (C1 ex +C0)
−1 −2 where we assume

C1 �= 0 to exclude case 2a. Integrating the latter equation depends on whether C0 vanishes or
not, and results in cases 2b and 2c.

k = 1. Here D ∈ {eu, uµ, µ �= 0} mod G equiv and there exists Q ∈ Amax with η �= 0.
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Let us investigate the first possibility D = eu (table 2). Equation (14) implies ηu = 0, i.e.
η = η(t, x). Therefore, equations (14)–(16) can be written as

2ξx
x − ξ t

t +
fx

f
ξx = η euηxx + Kηx − f ηt = 0

(K − Ku)η − Kξx
x − f ξx

t + eu
(
ξx
xx − 2ηx

) = 0.

(24)

The latter equation looks like Ku = νK + b eu + c with respect to K, where ν, b, c = const.
Therefore, K must take one of the following five values.

1. K = eνu + �1 eu + �0 mod G equiv, where ν �= 0, 1. (Here and below, �i = const, i = 0, 1.)
Then η = const, �1 = 0 and either �0 = 0 if f �= const or �0 = 0 mod G

equiv
1 if f = const

which implies ξx
t = 0, ξ t

tt = 0; therefore f = |x|λ mod G equiv (cases 1 and 2).
2. K = u + �1 eu + �0. In an analogous way to that in the previous case, we obtain

�1 = 0, f = 1 mod G equiv, �0 = 0 mod G
equiv
1 (case 3).

3. K = u eu + �1 eu + �0 mod G equiv. It follows from system (24) that η = 0 for any operator
from Amax, i.e. we have a contradiction to the assumption that η �= 0 for some operator
from Amax.

4. K = eu + �0. Then η1 = ζ 1(t) e−x + ζ 0(t), ξx = σ 1(t) ex + σ 0(t) − ζ 1(t) e−x . It can be
proved that ζ 1

t = ζ 0
t = σ 1

t = ξ t
tt = 0 and either �0 = 0 if f �= const or �0 = 0 mod G

equiv
1

if f = const; therefore σ 0
t = 0. The first equation of (24) implies that the function f

must satisfy l (l = 0, 1, 2) equations of the form

fx

f
= β e−x − α − 2γ0 ex

β e−x + γ1 + γ0 ex

with non-proportional sets of constant parameters (α, β, γ0, γ1). The values l = 0 and
l = 1 correspond to cases 4 (ε = 1) and 5b. An additional extension of Amax exists for
l = 2 in comparison with l = 1 iff f is a solution of the equation

fx

f
= λ2 e−x

λ1 e−x + λ0
− 2

where either λ2 = 0 or λ2 = 3λ1 �= 0. Integrating the latter equation gives cases 6b
and 6c.

5. K = �0. Here η1 = ζ 1(t)x + ζ 0(t), ξx = σ 1(t)x + σ 0(t) + ζ 1(t)x2. It follows from the
compatibility of system (24) that ηt = ξx

t = 0 if f �∈ {x−1, 1} mod G equiv or �0 = 0.
The values f = x−1, �0 �= 0 result in case 5c. If f �∈ {x−1, 1} mod G equiv and �0 = 0,
we obtain case 1 with ν = 0. If f = const then �0 = 0 mod G

equiv
1 . Below, �0 = 0. The

first equation of (24) holds when the function f is a solution of a system of l (l = 0, 1, 2)

equations of the form

fx

f
= −3βx + α − 2γ1

βx2 + γ1x + γ0

with non-proportional sets of constant parameters (α, β, γ0, γ1). The values l = 0 and
l = 1 correspond to cases 4 (ε = 0) and 5a. Additional extensions for l = 2 exist iff f is
a solution of the equation

fx

f
= λ2

λ1x + λ0

where either λ2 = 0 or λ2 = −3λ1 �= 0. These possibilities result in cases 6a and 6d.



7558 R O Popovych and N M Ivanova

Consider the case D = uµ (table 3). Equation (14) implies η0 = 0, i.e. η = η1(t, x)u.
Therefore, system (14)–(16) can be written as

2ξx
x − ξ t

t +
fx

f
ξx = µη1 uµη1

xx + Kη1
x − f η1

t = 0

(µK − uKu)η
1 − Kξx

x +
(
ξx
xx − 2(µ + 1)η1

x

)
uµ − f ξx

t = 0.

(25)

The latter equation looks with respect to K similarly to uKu = νK + buµ + c, where
ν, b, c = const. Therefore, K must take one of five values.

1. K = uν + �1u
µ + �0 mod G equiv, where ν �= 0, µ. Equations (25) imply η1 = const,

ξx = (µ − ν)η1x + σ(t), �1ξ
x
x = 0 (therefore, �1 = 0 since η1 = 0), f =

|x|λ mod G equiv, ξ t
t = (µ + λµ − 2ν − λν)η1, λσ = 0 and either �0 = 0 if λ �= 0

(case 1) or �0 = 0 mod G
equiv
1 if λ = 0 (case 2).

2. K = ln u + �1u
µ + �0 mod G equiv. In a way analogous to that in the previous case we

obtain �1 = 0, f = 1 mod G equiv, �0 = 0 mod G
equiv
1 (case 3).

3. K = uµ ln u + �1u
µ + �0 mod G equiv. It follows from system (25) that η = 0 for any

operator from Amax, i.e. we have a contradiction to the assumption that η �= 0 for some
operator from Amax.

4. K = uµ + �0 mod G equiv. Here η1 = ζ 1(t) e−x + ζ 0(t) and ξx = σ 1(t) ex + σ 0(t) − (µ +
1)ζ 1(t) e−x . It can be proved that ζ 1

t = ζ 0
t = σ 1

t = ξ t
tt = 0 and either �0 = 0 if f �= const

or �0 = 0 mod G
equiv
1 if f = const; therefore σ 0

t = 0. The first equation of (25) implies
that the function f must satisfy l (l = 0, 1, 2) equations of the form

fx

f
= (µ + 2)β e−x − α − 2γ0 ex

(µ + 1)β e−x + γ1 + γ0 ex

with non-proportional sets of constant parameters (α, β, γ0, γ1). The values l = 0 and
l = 1 correspond to cases 4 (ε = 1) and 5b. l = 2 iff f is a solution of the equation

fx

f
= λ2 e−x

λ1 e−x + λ0
− 2.

Looking for the inequivalent possibilities for integrating this equation results in cases 6b,
6d, 6f, 7b.

5. K = �0. Here η1 = ζ 1(t)x + ζ 0(t), ξx = σ 1(t)x +σ 0(t)+ (µ+ 1)ζ 1(t)x2. It follows from
the compatibility of system (25) that ηt = ξx

t = 0 if f �∈ {x−1, 1} mod G equiv or �0 = 0.
The values f = x−1, �0 �= 0 result in cases 5c and 6g. If f �∈ {x−1, 1} mod G equiv and
�0 = 0, we obtain case 1 with ν = 0. If f = const then �0 = 0 mod G

equiv
1 . Below,

�0 = 0. The first equation of (25) holds when the function f is a solution of a system of
l (l = 0, 1, 2) equations of the form

fx

f
= −(3µ + 4)βx + α − 2γ1

(µ + 1)βx2 + γ1x + γ0

with non-proportional sets of constant parameters (α, β, γ0, γ1). The values l = 0 and
l = 1 correspond to cases 4 (ε = 0) and 5a. l = 2 iff f is a solution of the equation

fx

f
= λ2

λ1x + λ0
.

Looking for the inequivalent possibilities for integrating this equation results in cases 6a,
6c, 6e, 7a.
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Table 5. Conditional equivalence algebras.

Conditions Basis of A equiv

K = D ∂t , ∂x, ∂u, u∂u, t∂t + f ∂f , ex(∂x − 2f ∂f ), f ∂f + D∂D

K = D = eu ∂t , t∂t + f ∂f , ∂x, ∂u + f ∂f , x∂x − 2f ∂f , x2∂x + x∂u − 3x∂f

D = eu,K = 0 ∂t , t∂t + f ∂f , ∂x, ∂u + f ∂f , x∂x − 2f ∂f , x2∂x + x∂u − 3x∂f

D = K = uµ ∂t , t∂t + f ∂f , ∂x, ∂u + µf ∂f , ex(∂x − 2f ∂f ), e−x((1 + µ)∂x−
u∂u + (2 + µ)f ∂f )

D = uµ, K = 0 ∂t , t∂t + f ∂f , ∂x, ∂u + µf ∂f , x∂x − 2f ∂f , (1 + µ)x2∂x+
xu∂u − (4 + 3µ)xf ∂f

k = 2. The assumption of two independent equations of form (22) for D yields D = const,
i.e. D = 1 mod G equiv. Ku �= 0 (otherwise, equation (2) is linear). Equations (14)–(16) can
be written as

2ξx
x − ξ t

t +
fx

f
ξx = 0 ηxx + Kηx − f ηt = 0,

−Kuη − Kξx
x + ξx

xx − f ξx
t − 2η1

x = 0.

(26)

The latter equation looks similar to (au + b)Ku = cK + d with respect to K, where
a, b, c, d = const. Therefore, to within transformations from G equiv,K must take one of
four values:

K = uν + �0 ν �= 0, 1 K = ln u + �0 K = eu + �0 K = u.

Classification for these values is carried out in a similar way to that described above. The
extensions obtained can be entered in either table 2 or table 3.

The problem of the group classification of equation (2) is exhaustively solved.

6. Additional equivalence transformations

When we impose some restrictions on arbitrary elements we can find additional equivalence
transformations named conditional equivalence transformations (see notion 1). As mentioned
above, the simplest way to find such equivalences between previously classified equations is
based on the fact that equivalent equations have equivalent maximal invariance algebras. A
more systematic way to proceed is to classify these transformations using the infinitesimal
method or the direct method. Examples of conditional equivalence algebras calculated by the
infinitesimal method are listed in table 5.

To find the complete collection of additional local equivalence transformations including
both continuous and discrete ones, we will use the direct method. Moreover, application of
this method allows us to describe all the local transformations that are possible for pairs of
equations from the class under consideration. A problem of this sort was first investigated for
wave equations by Kingston and Sophocleous [30–32]. Now we state a number of simple but
very useful lemmas containing preliminary results in the solution of this problem. (We imply
that the condition of non-singularity is satisfied for all the transformations.)

Lemma 1 [33]. For any local transformation between two evolutionary second-order
equations (i.e. equations of the form ut = H(t, x, u, ux, uxx) where Huxx

�= 0) the
transformation of the variable t depends only on t.
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Lemma 2. Any local transformation between two evolutionary second-order quasi-linear
equations having the form ut = F(t, x, u)uxx + G(t, x, u, ux) with F �= 0 is projectable, i.e.
t̃ = T (t), x̃ = X(t, x), ũ = U(t, x, u).

Lemma 3. Any local transformation between two equations from class (2) is linear with
respect to u: t̃ = T (t), x̃ = X(t, x), ũ = U 1(t, x)u + U 0(t, x) and, up to transformations
from G equiv, we can assume that the coefficient D is not changed.

Lemma 4. (Ut , Ux) �= (0, 0) for a local transformation between two equations from class (2)
only if D ∈ {uµ, eu} mod G equiv.

As an example of discrete equivalence transformations we can give the involution

t̃ = t x̃ = −x ũ = u + αx

in the couple of equations

f (x)ut = (euux)x + α euux and e−αxf (−x)ut = (euux)x + α euux.

Moreover, this transformation is a discrete invariance transformation for the equation

g(x) e−αx/2ut = (euux)x + α euux

iff g is an even function.
We also investigated some transformations into other classes of reaction–diffusion

equations. Using the discrete transformation t̃ = t, x̃ = −x, ũ = u + x/2 we can reduce the
equation

e−x/2ut = eu
(
uxx + u2

x + ux

)
to the reaction–diffusion equation from the classification of Dorodnitsyn [10]:

ũt = (eũũx̃ )x̃ − 1
4 eũ.

7. Exact solutions

We now turn to the presentation of some exact solutions for (2). Using our classification with
respect to all the possible local transformations (i.e. not only with respect to ones from G equiv),
first we can obtain solutions of simpler equations (e.g. 6a from tables 2 or 3) by means of the
classical Lie–Ovsiannikov algorithm or non-classical methods. Then we transform them to
solutions of more complicated equations (such as 6b, 6c).

Let us note that the equations with f = 1 are well investigated and that most of the
exact solutions given below have been constructed before (see citations in [36]). However,
to the best of our knowledge, there exist no works containing a systematic study of all the
possible Lie reductions in this class, as well as exhaustive consideration of the integrability
and exact solutions of the corresponding reduced equations. That is why we have decided
to implement the relevant Lie reduction algorithm independently, especially since it is not a
difficult problem.

So, let us consider equation 2.6a:

ut = (euux)x. (27)

Let us recall that for (27) the basis of Amax is formed by the operators

Q1 = ∂t Q2 = t∂t − ∂u Q3 = ∂x Q4 = x∂x + 2∂u.

The only non-zero commutators of these operators are [Q1,Q2] = Q1 and [Q3,Q4] = Q3.
Therefore Amax is a realization of the algebra 2A2.1 [34]. All the possible inequivalent (with
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Table 6. Reduced ODEs for (27). α �= 0, ε = ±1, δ = sign t .

N Subalgebra Ansatz u = ω Reduced ODE

1 〈Q3〉 ϕ(ω) t ϕ′ = 0
2 〈Q4〉 ϕ(ω) + 2 ln|x| t ϕ′ = 2eϕ

3 〈Q1〉 ϕ(ω) x (eϕ)′′ = 0
4 〈Q2〉 ϕ(ω) − ln|t | x (eϕ)′′ = −δ

5 〈Q1 + εQ3〉 ϕ(ω) x − εt (eϕ)′′ = −εϕ′

6 〈Q2 + εQ3〉 ϕ(ω) − ln|t | x − ε ln|t | (eϕ)′′ = −δ(εϕ′ + 1)

7 〈Q1 + εQ4〉 ϕ(ω) + 2εt xe−εt (eϕ)′′ = −εωϕ′ + 2ε

8 〈Q2 + αQ4〉 ϕ(ω) + (2α − 1) ln|t | x|t |−α (eϕ)′′ = δ(−αωϕ′ + 2α − 1)

respect to inner automorphisms) one-dimensional subalgebras of 2A2.1 [35] are exhausted by
the ones listed in table 6 along with the corresponding ansätze and the reduced ODEs.

We succeeded in solving the equations 6.1–6.5. Thus we have the following solutions
of (27):

u = ln|c1x + c0| u = ln

(−x2

2t
+

c1x + c0

t

)

u = ϕ(x − εt) where
∫

eϕ

c1 − εϕ
dϕ = ω + c0.

Using these we can construct solutions for cases 2.6b–2.6d easily. For example, the
transformation 2.4 yields the corresponding solutions for the more complicated and interesting
equation

ex

(γ ex + 1)3
ut = (euux)x + euux

having the localized density (case 2.6c)

u = ln|c1 + c0(e
−x + γ )| u = ln

(
− 1

2t (e−x + γ )
− c1

t
+ c0

e−x + γ

t

)
.

µ = −1 is a singular value of the parameter µ for case 3.6a. So, the equation

ut =
(ux

u

)
x

(28)

is distinguished by the reduction procedure. It is remarkable that cases 3.6c and 3.6d are
reduced exactly to equation (28). The invariance algebra of (28) is generated by the operators

Q1 = ∂t Q2 = t∂t + u∂u Q3 = ∂x Q4 = x∂x − 2u∂u

and is a realization of the algebra 2A2.1 too. The reduced ODEs for equation (28) are listed in
table 7. After integrating cases 7.1–7.4 we obtain the following solutions of (28):

u = c0 ec1x u = 2c2
1t

cos2 c1(x + c0)
u = 2tc0c

2
1 ec1x

(1 − c0 ec1x)2

u = c1

−ε + c0 ec1(x−εt)
u = ε

x − εt + c0
u = 2t

(x + c1)2 + c0t2
.

Analogously to the previous case, we obtain by means of transformations 3.5 exact solutions
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Table 7. Reduced ODEs for (28). α �= 0, ε = ±1.

N Subalgebra Ansatz u = ω Reduced ODE

1 〈Q3〉 ϕ(ω) t ϕ′ = 0
2 〈Q4〉 ϕ(ω)x−2 t ϕ′ = 2
3 〈Q1〉 ϕ(ω) x (ϕ−1ϕ′)′ = 0
4 〈Q2〉 ϕ(ω)t x (ϕ−1ϕ′)′ = ϕ

5 〈Q1 + εQ3〉 ϕ(ω) x − εt (ϕ−1ϕ′)′ = −εϕ′

6 〈Q2 + εQ3〉 ϕ(ω)t x − ε ln|t | (ϕ−1ϕ′)′ = −εϕ′ + ϕ

7 〈Q1 + εQ4〉 ϕ(ω) e−2εt x e−εt (ϕ−1ϕ′)′ = −εωϕ′ − 2εϕ

8 〈Q2 + αQ4〉 ϕ(ω)t |t |−2α x|t |−α (ϕ−1ϕ′)′ = −αωϕ′ + (1 − 2α)ϕ

Table 8. Reduced ODEs for (29). µ �= 0, −1, α �= 0, ε = ±1, δ = sign t .

N Subalgebra Ansatz u = ω Reduced ODE

1 〈Q3〉 ϕ(ω) t ϕ′ = 0
2 〈Q4〉 ϕ(ω)|x|2/µ t ϕ′ = 2µ−2(2 + µ)ϕµ+1

3 〈Q1〉 ϕ(ω) x (ϕµϕ′)′ = 0
4 〈Q2〉 ϕ(ω)|t |−1/µ x (ϕµϕ′)′ = −δµ−1ϕ

5 〈Q1 + εQ3〉 ϕ(ω) x − εt (ϕµϕ′)′ = −εϕ′

6 〈Q2 + εQ3〉 ϕ(ω)|t |−1/µ x − ε ln|t | (ϕµϕ′)′ = −δεϕ′ − δµ−1ϕ

7 〈Q1 + εQ4〉 ϕ(ω) e2εµ−1t xe−εt (ϕµϕ′)′ = −εωϕ′ + 2µ−1εϕ

8 〈Q2 + αQ4〉 ϕ(ω)|t |(2α−1)/µ x|t |−α (ϕµϕ′)′ = δµ−1(2α − 1)ϕ − δαωϕ′

of equation 3.6d in the following forms:

u = c0 e(c1−γ )e−x

u = 2c2
1t e−γ e−x

cos2 c1(e−x + c0)
u = 2tc0c

2
1 e(c1−γ )e−x

(1 − c0 ec1e−x
)2

u = c1 e−γ e−x

−ε + c0 ec1(e−x−εt)
u = ε e−γ e−x

e−x − εt + c0
u = 2t e−γ e−x

(e−x + c1)2 + c0t2
.

Another example of an equation with a localized density is given by case 3.6f. To look for
exact solutions of it, first we reduce it to equation 3.6a:

ut = (uµux)x . (29)

As in the previous cases, the invariance algebra of (29)

Amax = 〈Q1 = ∂t ,Q2 = t∂t − µ−1u∂u,Q3 = ∂x,Q4 = x∂x + 2µ−1u∂u〉
is a realization of the algebra 2A2.1. The result of reduction (29) under inequivalent subalgebras
of Amax is written down in table 8.

For some of the reduced equations we can construct the general solutions. For others we
succeeded in finding only particular solutions. These solutions are the following:

u = |c1x + c0|
1

µ+1 u = (c0 − εµ(x − εt))
1
µ u =

(
− µ

µ + 2

(x + c0)
2

2t
+ c1|t |−

µ

µ+2

) 1
µ

u =
(

− µ

µ + 2

(x + c0)
2

2t
+ c1(x + c0)

µ

µ+1 |t |−
µ(2µ+3)

2(µ+1)2

) 1
µ

.
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All the results of tables 7, 8 as well as the solutions constructed can be extended to
equations 3.6b–3.6g using the local equivalence transformations. So for the equation

e−2x

(e−x + γ )
4+3µ

1+µ

ut = (uµux)x + uµux (30)

(case 3.6f ) the transformations 3.7 yield exact solutions in the form

u = |c0(e
−x + γ ) − c1|

1
µ+1

u =
(

c0 +
εµ

e−x + γ
+ ε2µt

) 1
µ

|e−x + γ |− 1
µ+1

u =
(

− µ

µ + 2

1

2t

(
c0 − 1

e−x + γ

)2

+ c1|t |−
µ

µ+2

) 1
µ

|e−x + γ |− 1
µ+1

u =
(

− µ

µ + 2

1

2t

(
c0 − 1

e−x + γ

)2

+ c1

(
c0 − 1

e−x + γ

) µ

µ+1

|t |−
µ(2µ+3)

2(µ+1)2

) 1
µ

|e−x + γ |− 1
µ+1 .

A number of exact solutions were constructed for equations from class (19) (f = 1) by means
of non-classical methods. Starting from them and using local transformations of conditional
equivalence, we can obtain non-Lie exact solutions for more complicated equations (cases 6b,
6c, . . .).

Amerov [38] and King [39] suggested looking for solutions of the equation ut =
(u−1/2ux)x (equation 3.6a, µ = −1/2) in the form u = (ϕ1(x)t + ϕ0(x))2 where the functions
ϕ1(x) and ϕ0(x) satisfy the system of ODEs ϕ1

xx = (ϕ1)2, ϕ0
xx = ϕ0ϕ1. A particular solution

of this system is

ϕ1 = 6

x2
ϕ0 = c1

x2
+

c2

x3
.

And the corresponding solution of equation 3.6f with µ = −1/2 can be written down as

u = (6t + c′
1 + c2 e−x)2(e−x + γ )6.

8. Conclusion

In this paper, the group classification in the class of equations (2) is performed completely.
The main results on classification are collected in tables 1–3 where we list inequivalent cases
of extensions with the corresponding Lie invariance algebras. Among the equations presented
there exist ones which have the density f localized in the space of x and are invariant with
respect to more abundant Lie algebras than Aker. Following the tables, we write down all
the additional equivalence transformations, reducing some equations from our classification
to others of simpler forms. (In fact, the equations of (2) have been classified with respect to
two different equivalence relations generated by either the equivalence group or the set of all
possible transformations.) For a number of equations from the list of the reduced ones we
construct optimal systems of inequivalent subalgebras, corresponding Lie ansätze and exact
invariant solutions. By means of additional equivalence transformations the solutions obtained
are transformed to the ones for the more interesting and complicated equations with localized
densities.

We describe equivalence transformations within a class of PDEs (2) using the infinitesimal
and direct methods. The direct method enables us to find the group of all possible local
equivalence transformations (i.e. not only continuous ones) in the whole class (2) as well as
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all the conditional equivalence transformations. Moreover, we begin to solve the general
equivalence problem for any pair of equations from class (2) with respect to the local
transformations (lemmas 1–4).

We plan to continue investigations of this subject. For the class under consideration we
plan to perform classification of potential and non-classical (conditional) symmetries and finish
studying all the possible partial equivalence transformations. We also intend to investigate the
existence, localization and asymptotic properties of solutions of initial and boundary-value
problems for nonlinear convection–diffusion equations.
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